Shri Jain P G College, Bikaner

BC-101

B.C.A. (Part I) Examination, 2017 FUNDAMENTAL MATHEMATICS FOR COMPUTER APPLICATION

Paper: BCA-101

Time allowed: Three hours

Maximum Marks: 50

Attempt any five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

UNIT-I

1. (a) Find the rank of following matrix, A

[5]

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & 8 \end{bmatrix}$$

(b) Prove that

[5]

$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = (a - b) (b - c) (c - a)$$

2. (a) What do you mean by Hermitian matrix? Show that following matrix is Hermitian. [1+4]

$$A = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0 \end{bmatrix}$$

(b) Solve the following system of linear equation by Cramer's rule [5]

$$2x + y + z = 3$$

$$x - y - z = 0$$

$$x + 2y + z = 0$$

UNIT-II

3. (a) (i) Find the positive integer n so that

$$[2 \times 2.5]$$

$$\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108$$

(ii) Evaluate
$$\lim_{x\to 2} \left[\frac{1}{x-2} - \frac{2(2x-3)}{x^3 - 3x^2 + 2x} \right]$$

- (b) Find the derivative of $\frac{\cos x}{1+\sin x}$ with respect to x. [5]
- 4. (a) The total revenue in rupees received from the sale of x units of a product is given by R(x) = 3x² + 36x + 5. Find the marginal revenue, when x = 5, where by marginal revenue we mean the rate of change of total revenue w.r.t. the number of items sold at an instant. [5]

(2)

(b) Find the maximum profit that a company can make, if the profit function is given by $P(x) = 41 - 72x - 18x^2$. [5]

UNIT - III

5. (a) Evaluate
$$\int \frac{x^3 - 1}{x^2} dx$$
 [5]

(b) Evaluate
$$\int \frac{\sin(\tan^{-1}x)}{1+x^2} dx$$
 [5]

6. (a) Evaluate
$$\int \frac{x^2 + 1}{x^2 - 5x + 6} dx$$
 [5]

(b) Evaluate
$$\int \frac{(x^2+1)e^x}{(x+1)^2} dx$$
 [5]

UNIT-IV

- 7. (a) Find the equation of line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis. [5]
 - (b) Calculate the center co-ordinates and radius of a circle given by following equation. [5]

$$x^2 + y^2 - 4x - 6y - 12 = 0$$

8. (a) Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15. [5]

BC-101 (3) P.T.O

(b) Find the equation of straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0 [5]

UNIT-V

- 9. (a) Find a vector in the direction of vector $\vec{a} = \hat{i} 2\hat{j}$ that has magnitude 7 units. [5]
 - (b) If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular. [5]
- 10. (a) Find $|\vec{a} \times \vec{b}|$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$. [5]
 - (b) Show that the points $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$ and $C(7\hat{i}-\hat{k})$ are collinear. [5]

श्री जैन (पी.जी.) कॉलेज, बीकानेर

BC - 331

BCA (Part-I) Examination, 2018

BCA-101

(Mathematics for Computer Science)

Time allowed: Three hours

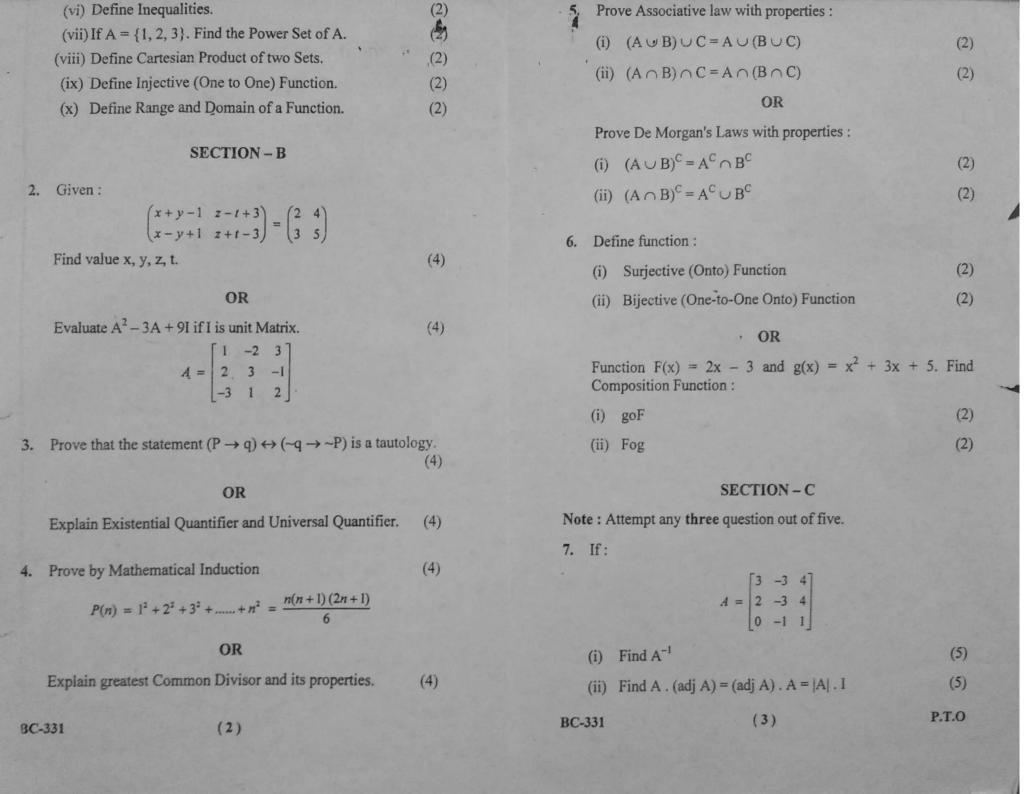
Maximum Marks: 70

SECTION - A (Marks $2 \times 10 = 20$)

Answer all ten questions. (Answer limit 50 words) Each question carries 02 marks.

SECTION - B (Marks $4 \times 5 = 20$)

Answer all five questions. Each question has internal choice. (Answer limit 200 words) Each question carries 04 marks.


SECTION - C (Marks $10 \times 3=30$)

Answer any three questions out of five. (Answer limit 500 words) Each question carries 10 marks.

SECTION - A

- 1. Attempt all question. Answer should not exceed 50 words in each question.
 - (i) Define Transpose of a Matrix with example. (2)
 - (ii) Define Diagonal Matrix and Identify Matrix with example. (2)
 - (iii) Define Propositions. (2)
 - (iv) Define Conditional Statement. (2)
 - (v) Find all the integers n such that: (2)

1 < 2n - 6 < 14

8. Show that the following Argument is Valid.

(i) $P \rightarrow q$

 $q \rightarrow r$

 $\therefore P \rightarrow r$

(5)

(ii) Pvq

 $\sim P$

:. q

(5)

9. Let a = 8316 and b = 10920.

(a) Find the greatest Common divisor of a and b.

(5)

(b) Find integer X and Y such that d = xa + yb

by Euclidean Algorithm.

(5)

10. Explain operation of sets in detail with example.

(10)

11. Explain equivalence relation with example.

(10)

BC-376

BCA (Part-I) Examination, 2019 BCA-101

(Mathematics for Computer Science)

Time allowed: Three hours Maximum Marks: 70

SECTION - A

(Marks: $2 \times 10 = 20$)

Answer all ten questions. (Answer limit 50 words) Each question carries 02 marks.

SECTION - B

 $(Marks: 4 \times 5 = 20)$

Answer all five questions. Each question has internal choice. (Answer limit 200 words) Each question carries 04 marks.

SECTION - C

(Marks $10 \times 3 = 30$)

Answer any three questions out of five. (Answer limit 500 words) Each question carries 10 marks.

SECTION - A

Attempt all questions. Answer should not exceed 50 words in each question. 1. Solve the equation

$$\begin{bmatrix} 1 \\ 0.6 \\ -3 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 0.2 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

2

What is Identity Matrix? Give an example to explain. (ii)

2

Design a truth-table for ($\sim p \vee q$). (iii)

2

State the type of operator to be used for the following statement: (iv)

If 10 is greater than 0 then 10 is positive. Also symbolize the above statement. What is the product of four smallest prime numbers? (v)

2

State fundamental theorem of arithmetic. (vi)

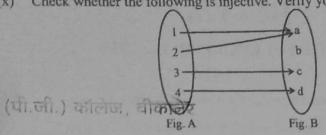
(vii) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6, 8\}$

2

- (a) Find A' (b) Find B'

2


(viii) What is the finite set? Explain with example.

2

(ix) Define symmetric relation with example.

P.T.O.

Check whether the following is injective. Verify your answer.

SECTION - B

Find the transpose of a Matrix.

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -5 & 9 \end{bmatrix}$$

and verify that $(A^T)^T = A$

Give
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$

$$\mathbf{B} = \begin{bmatrix} 0 & -1 \\ -2 & 1 \end{bmatrix}$$

Find $C = A \times B$

Show that $(p \rightarrow q) \lor (q \rightarrow p)$ is a tantology.

OR

Show that $p \rightarrow Q$ and $\sim p \vee Q$ are logically equivalent.

By using Mathematical Induction prove that the given equation is true for all positive integers.

$$2+4+6+\ldots+2n=n(n+1)$$

OR

Explain congruence relation with example.

Given three sets P, Q and R such that

P: {x: x is a natural no. between 10 & 16}

Q: {y: y is even number between 8 & 20}

R: {7, 9, 11, 14, 18, 20}

Find P - Q

(b) Find Q-R

Find R - P

(d) Find Q-P

OR If two sets $A = \{1, 2, 4, 5, 6\}$ and $B = \{2, 3, 4, 8\}$ then prove that $(A \cap B) = A' \cup B'$.

Let $A = \{1, 2, 3, 4\}$ and $S = \{(a, b) : a \in A, b \in A, a \text{ divides } b\}$ write S explicitly.

How many relations are possible from a set A of 'm' elements to another set B of 'n' elements? Why? List all the relations on A where $A = \{1, 2\}$ 2

SECTION - C

Note: Attempt any three question out of five.

7. Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 \\ 7 \\ 5 \end{bmatrix}$

श्री जैन (पी.जी.) कॉलेज, बीकानेर

- (i) Find A⁻¹
- (ii) Find X if AX = B

 $5 \times 2 = 10$

 $5 \times 2 = 10$

- What is contradiction ? Construct the truth-table for $(P \to Q) \wedge (Q \to R)$ and state 10 whether is a contradiction.
- 10 State steps of Euclidean Algorithm. Also write an illustration to solve it.
- If $A = \{1, 3, 5\}$, $B = \{3, 5, 6\}$ and $C = \{1, 3, 7\}$
 - (i) Verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (ii) Verity $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 11. If R is the relation in $N \times N$ defined by (a, b) R (c, d) if and only if a + b = b + c, show that R is an equivalence relation.

 $4 \times 1 = 4$

4

BC-196 श्री जैन (पी.जी.) कॉलेज, बीकानेर

B.C.A. (Part-I) Examination, 2020 BCA-101 (Mathematics for Computer Science)

Time allowed: Three hours

Maximum Marks: 70

SECTION - A

(Marks: $2 \times 10 = 20$)

Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

SECTION - B

(Marks: $4 \times 5 = 20$)

Answer all five questions. Each question has internal choice (Answer limit 200 words). Each question carries 4 marks.

SECTION - C

 $(Marks: 10 \times 3 = 30)$

Answer any three questions out of five (Answer limit 500 words). Each question carries 10 marks.

SECTION - A

1. (i) Define complex matrix with example. 2 (ii) Define skew symmetric matrix with example. 2 (iii) Define logical equivalence. 2 What do you mean by logical implication? (iv) 2 Define absolute value with example. (v) 2 Write down principle of Mathematical Induction. (vi) 2 (vii) Suppose $U = N = \{1, 2, 3,\}$, the positive integers is the Universal set. Let $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7\}$ then find

1

AC

A/B

(a)

(b)

- (viii) Suppose $S = \{1, 2, 3\}$ then find Power (S).
- (ix) Define Antisymmetric relation.
- (x) Let $A = \{1, 2\}$, $B = \{a, b, c\}$ and $C = \{c, d\}$ then find $(A \times B) \cap (A \times C)$

SECTION - B

2. Find the Minor and Cofactor of each element of matrix $\begin{bmatrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{bmatrix}$

OR

If
$$A = \begin{bmatrix} 3 & 4 \\ -2 & 0 \\ 7 & -5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -3 \\ 5 & 6 \\ -1 & 8 \end{bmatrix}$ then verify that $(A + B)' = A' + B'$.

3. Show that the propositions $\neg (p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.

OR

Prove that the following argument is valid $p \rightarrow \neg q$, $r \rightarrow q$, $r \vdash \neg p$.

4. Prove that $P(n): 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

OR

Prove by the principal of mathematical induction

P(n):
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
.

5. Prove $(A \cup B) / (A \cap B) = (A/B) \cup (B/A)$.

OR

If A and B are finite sets, then $A \cup B$ and $A \cap B$ are finite now prove that

2

$$n(A \cup B) = n(A) + n(B) - n(A \cap B).$$

BC-196

4

Given $A = \{1, 2\}$, $B = \{x, y, z\}$ and $C = \{3, 4\}$ then find $A \times B \times C$.

OR

Consider a set $A = \{a, b, c\}$ and the relation R on A defined by $R = \{(a, a), (a, b), (b, c), (c, c)\}$ find $\{a, b, c\}$ and the relation R on A defined by $R = \{(a, a), (a, b), (b, c), (c, c)\}$ (b, c), (c, c)} find (a) reflexive (R), (b) symmetric (R) and (c) transitive (R).

SECTION - C

Find the inverse of matrix by adjoint method:

3 1 4

10

- Write short notes on conditional and biconditional statements. (i)
- $\neg (\exists x \in A) p(x) \equiv (\forall x \in A) \neg p(x).$ (ii)

 $5 \times 2 = 10$

Solve the congruence equation $\log 2x \equiv 213 \pmod{2295}$. 9.

10

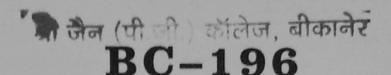
- Find the power set power (A) of $A = \{1, 2, 3, 4, 5\}$. (i) 10.
 - If A and B are any two sets, then prove that $A \cup B = A \cap B \Leftrightarrow A = B$. $5 \times 2 = 10$ (ii)
 - Let R and S be the following relations on (i) 11. $A = \{1, 2, 3\}$

 $R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}, S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}$ Eight (2)

Find (a) $R \cap S$, $R \cup S$, R^C (b) RoS (c) $S^2 = SoS$

Given $A = \{1, 2, 3, 4\}$ consider the following in A (ii) $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$

(a) Draw a directed graph.


Is R (1) Reflexive (2) Symmetric (3) Transitive (4) Antisymmetric

(c) Find $R^2 = RoR$ $5 \times 2 = 10$

Light 1 10	Roll No. :		
------------	------------	--	--

Total No. of Questions: 11]

[Total No. of Printed Pages: 3

BCA (Part-I) Examination, 2022 MATHEMATICS FOR COMPUTER SCIENCE

Paper - BCA-101

Time: 3 Hours]

[Maximum Marks: 70

Section-A

(Marks : $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section-B

(Marks: $4 \times 5 = 20$)

Note: Answer all five questions. Each question has internal choice (Answer limit 200 words). Each question carries 4 marks.

Section-C

(Marks : $10 \times 3 = 30$)

Note:— Answer any three questions out of five (Answer limit 500 words). Each question carries 10 marks.

Section-A

- 1. (i) Define Identity Matrix.
 - (ii) Define Transpose of Matrix.
 - (iii) Define Propositions with example.
 - (iv) Define Tautologies.
 - (v) Define Greatest Common Divisor (GCD).

BR-301

(1)

BC-196 P.T.O.

- (vi) Define Absolute Value.
- (vii) Define Power Sets with example.
- (viii) Define Universal Set.
- (ix) Define Relations.
- (x) Define Function.

Section-B

in the to

2. If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$
, verify $A^2 - 3A + 2I = 0$.

Or

Find
$$x$$
, y , z and w , if $3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 & x+y \\ z+w & 3 \end{bmatrix}$.

3. Prove that the statement $(p \to q) \leftrightarrow (\sim q \to \sim p)$ is a tautology.

Or

Construct the Truth Tables:

$$\sim (p \lor q) \cong \sim p \land \sim q$$

 $p \lor (q \land r) \cong (p \lor q) \land (p \lor r)$

4. Prove by Mathematical Induction:

$$1^2 + 2^2 + 3^2 + \dots + (2n - 1) = n^2$$

Or

Explain Primes, divisibility and properties of Integer.

5. Explain Associative law and Commutative law.

Or

State and prove De Morgan's laws.

- 6. Explain:
 - (a) Domain and Range of a Relation
 - (b) Explain one to one and onto function

Or

Consider the function $f, g: R \to R$ defined by :

$$F(x) = x^2 + 3x + 1$$

$$g(x) = 2x - 3$$

Find:

- (i) fof
- (ii) fog
- (iii) gof

Section-C

7. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, find A^{-1} .

8. Show that given Argument is Valid:

$$p \rightarrow q$$

$$q \rightarrow r$$

$$p \rightarrow r$$

- 9. Explain Euclidean algorithm.
- 10. Explain Operation on sets with example.
- 11. Explain Equivalence relation with example.

...